Simple Harmonic Motion

Periodic motion is motion of an object that represents the object returns to a given position after a fixed time interval. Examples of oscillatory motion are : oscillating pendulum, vibrations of a stretched string, vibration of electrons, and movement of light in a laser beam

- Consider a particle located at point P on the circumference of a circle of radius A , with the line OP making an angle δ with the x axis at $\mathrm{t}=0$.
- If the particle moves along the circle with constant angular velocity ω the angle between OP and the x axis is $(\theta+\delta)$.
- As the particle moves along the circle, the projection of OP on the y axis, labeled point Q as in Fig. moves back and forth along the y axis between the limits $\mathrm{y}= \pm \mathrm{A}$.
- From the triangle OPQ, we see that
- $\quad \mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}+\delta)$

Where $\theta=\omega t$ and y is called the displacement of the vibrating particle. The rate of change of displacement is called the velocity of the vibrating particle.

The velocity is given as,

$$
\dot{y}=\frac{d y}{d t}=A \omega \cos (\omega t+\delta)
$$

The acceleration is given by.

$$
\ddot{y}=\frac{d^{2} y}{d t^{2}}=-A \omega^{2} \sin (\omega t+\delta)=-\omega^{2} y
$$

The last equation shows that the acceleration \ddot{y} is directly proportional to the displacement y and in opposite direction to it. In this case, the object moves with simple harmonic motion (SHM).

- We can summarize this type of motion in the following.

Displacement

$$
\mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}+\delta)
$$

Velocity

$$
\dot{y}=\frac{d y}{d t}=A \omega \cos (\omega t+\delta)
$$

Acceleration

$$
\ddot{y}=\frac{d^{2} y}{d t^{2}}=-A \omega^{2} \sin (\omega t+\delta)=-\omega^{2} y
$$

Force

$$
\mathrm{F}=-\mathrm{m}_{\omega}{ }^{2} \mathrm{y}
$$

Amplitude
Maximum velocity
A_{ω}
Maximum acceleration
$A \omega^{2}$
Period
$\mathrm{T}=2 \pi / \omega$

Energy of the simple harmonic oscillator.

The kinetic energy of the particle is given by:

$$
K . E=\frac{1}{2} m v^{2}=\frac{1}{2} m \dot{y}^{2}
$$

The potential energy of the vibrating particle is the amount of work done in moving the particle a distance y. So,

$$
\begin{aligned}
P . E & =\int_{0}^{y}-F(y) d y \\
& =\int_{0}^{y}-\left(-m \omega^{2} y\right) d y \\
& =m \omega^{2} \int_{0}^{y} y d y \\
& =\frac{1}{2} m \omega^{2} y^{2} \\
E= & \frac{1}{2} m \dot{y}^{2}+\frac{1}{2} m \omega^{2} y^{2}
\end{aligned}
$$

T0

0

$$
\begin{aligned}
E & =\frac{1}{2} m \omega^{2} A^{2} \cos ^{2} \omega\left(\mathrm{t}+{ }^{\text {an }}\right)+\frac{1}{2} m \omega^{2} A^{2} \sin ^{2} \omega(\mathrm{t}+) \\
& =\frac{1}{2} m \omega^{2} A^{2}\left[\cos ^{2} \omega(\mathrm{t}+)+\sin ^{2} \omega(\mathrm{t}+)\right] \\
& =\frac{1}{2} m \omega^{2} A^{2}
\end{aligned}
$$

The Simple Pendulum

- $\mathrm{F}=-\mathrm{mg} \sin \theta, \quad \sin \theta=\frac{x}{\ell}$
- $\mathrm{F}=-\mathrm{mg} \frac{x}{\ell}$
- From Newton's second law
- $\quad F=m \ddot{x}$
- $m \ddot{\mathrm{x}}=-\mathrm{mg} \frac{x}{\ell}$
- $\quad \ddot{\mathrm{x}}=-\frac{g}{\ell} \mathrm{x}$
- This equation is similar to the equation of simple harmonic motion
- $\ddot{y}=-\omega^{2} y$
- Comparing the last two equations:
- $\omega^{2}=\frac{g}{\ell}$
- So the angular velocity is given by:

Figure (3)

- $\omega=\sqrt{\frac{g}{l}}$ and the period of the motion is:
- $T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{l}{g}}$

Oscillating spring

- From Hook's law:

$$
\mathrm{F}=-\mathrm{kx}
$$

- $m \ddot{x}=-k x$
- $\quad \ddot{\mathrm{X}}=-\frac{k}{m} \mathrm{X}$
- This equation is like the equation of simple harmonic motion
- $\ddot{y}=-\omega^{2} y$
- Comparing the last two equations:
- $\omega=\sqrt{\frac{k}{m}} \quad \rightarrow \quad T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{k}}$

