Simple Harmonic Motion

Periodic motion is motion of an object that represents the object returns to a given position after a fixed time interval. Examples of oscillatory motion are :

oscillating pendulum, vibrations of a stretched string, vibration of electrons, and movement of light in a laser beam

- Consider a particle located at point P on the circumference of a circle of radius A, with the line OP making an angle δ with the x axis at t = 0.
- If the particle moves along the circle with constant angular velocity ω the angle between OP and the x axis is $(\theta + \delta)$.
- As the particle moves along the circle, the projection of OP on the y axis, labeled point Q as in Fig. moves back and forth along the y axis between the limits $y = \pm A$.
- From the triangle OPQ, we see that
- $y = A \sin(\omega t + \delta)$

Where $\theta = \omega t$ and y is called the displacement of the vibrating particle. The rate of change of displacement is called the velocity of the vibrating particle.

The velocity is given as,

$$\dot{y} = \frac{dy}{dt} = A\omega\cos(\omega t + \delta)$$

The acceleration is given by.

$$\ddot{y} = \frac{d^2 y}{dt^2} = -A\omega^2 \sin(\omega t + \delta) = -\omega^2 y$$

The last equation shows that the acceleration ÿ is directly proportional to the displacement y and in opposite direction to it. In this case, the object moves with **simple harmonic motion (SHM)**. • We can summarize this type of motion in the following.

Displacement	$y = A \sin (\omega t + \delta)$
Velocity	$\dot{y} = \frac{dy}{dt} = A\omega\cos(\omega t + \delta)$
Acceleration	$\ddot{y} = \frac{d^2y}{dt^2} = -A\omega^2\sin(\omega t + \delta) = -\omega^2 y$
Force	$F = -m_{\omega}^{2} y$
Amplitude	A
Maximum velocity	A_{ω}
Maximum acceleration	A_{ω}^{2}
Period	$T = 2\pi/\omega$

Energy of the simple harmonic oscillator.

The kinetic energy of the particle is given by:

 $K.E = \frac{1}{2} mv^2 = \frac{1}{2} m\dot{y}^2$

The potential energy of the vibrating particle is the amount of work done in moving the particle a distance y. So,

 $P.E = \int_0^y -F(y)dy$ $=\int_0^y -(-m\omega^2 y)dy$ $= m\omega^2 \int_0^y y \, dy$ $=\frac{1}{2}m\omega^2 y^2$ $E = \frac{1}{2}m\dot{y}^2 + \frac{1}{2}m\omega^2 y^2$? ? $E = \frac{1}{2} m\omega^2 A^2 \cos^2 \omega (t + \gamma) + \frac{1}{2} m\omega^2 A^2 \sin^2 \omega (t + \gamma)$ $= \frac{1}{2} m\omega^2 A^2 [\cos^2 \omega (t +) + \sin^2 \omega (t +)]$ $=\frac{1}{2}m\omega^2A^2$

The Simple Pendulum

- $F = -mg \sin \theta$, $\sin \theta = \frac{x}{\ell}$
- $F = -mg \frac{x}{\ell}$
- From Newton's second law
- $F = m\ddot{x}$
- $m\ddot{x} = -mg\frac{x}{\ell}$
- $\ddot{\mathbf{x}} = -\frac{g}{\ell}\mathbf{x}$
- This equation is similar to the equation of simple harmonic motion
- $\ddot{y} = -\omega^2 y$
- Comparing the last two equations:
- $\omega^2 = \frac{g}{\ell}$
- So the angular velocity is given by:
- $\omega = \sqrt{\frac{g}{l}}$ and the period of the motion is: 2π 1

Oscillating spring

• From Hook's law:

F = -k x

• $m\ddot{x} = -k x$

• $\ddot{\mathbf{x}} = -\frac{k}{m}\mathbf{x}$

• This equation is like the equation of simple harmonic motion

• $\ddot{y} = -\omega^2 y$

• Comparing the last two equations:

•
$$\omega = \sqrt{\frac{k}{m}} \rightarrow T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

